分布式数据库 Apache HBase

分布式数据库 Apache HBase

Apache
Java
跨平台
Apache
2008-10-27

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。

上图描述了Hadoop EcoSystem中的各层系统,其中HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。

此外,Pig和Hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。

HBase访问接口

1.       Native Java API,最常规和高效的访问方式,适合Hadoop MapReduce Job并行批处理HBase表数据

2.       HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3.       Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,Python等多种语言,适合其他异构系统在线访问HBase表数据

4.       REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5.       Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapReduce Job来处理HBase表数据,适合做数据统计

6.       Hive,当前Hive的Release版本尚没有加入对HBase的支持,但在下一个版本Hive 0.7.0中将会支持HBase,可以使用类似SQL语言来访问HBase

HBase数据模型

Table & Column Family

Row Key Timestamp Column Family
URI Parser
r1 t3 url=http://www.taobao.com title=天天特价
t2 host=taobao.com  
t1    
r2 t5 url=http://www.alibaba.com content=每天…
t4 host=alibaba.com  

Ø  Row Key: 行键,Table的主键,Table中的记录按照Row Key排序

Ø  Timestamp: 时间戳,每次数据操作对应的时间戳,可以看作是数据的version number

Ø  Column Family:列簇,Table在水平方向有一个或者多个Column Family组成,一个Column Family中可以由任意多个Column组成,即Column Family支持动态扩展,无需预先定义Column的数量以及类型,所有Column均以二进制格式存储,用户需要自行进行类型转换。

Table & Region

当Table随着记录数不断增加而变大后,会逐渐分裂成多份splits,成为regions,一个region由[startkey,endkey)表示,不同的region会被Master分配给相应的RegionServer进行管理:

-ROOT- && .META. Table

HBase中有两张特殊的Table,-ROOT-和.META.

Ø  .META.:记录了用户表的Region信息,.META.可以有多个regoin

Ø  -ROOT-:记录了.META.表的Region信息,-ROOT-只有一个region

Ø  Zookeeper中记录了-ROOT-表的location

Client访问用户数据之前需要首先访问zookeeper,然后访问-ROOT-表,接着访问.META.表,最后才能找到用户数据的位置去访问,中间需要多次网络操作,不过client端会做cache缓存。

MapReduce on HBase

在HBase系统上运行批处理运算,最方便和实用的模型依然是MapReduce,如下图:

HBase Table和Region的关系,比较类似HDFS File和Block的关系,HBase提供了配套的TableInputFormat和TableOutputFormat API,可以方便的将HBase Table作为Hadoop MapReduce的Source和Sink,对于MapReduce Job应用开发人员来说,基本不需要关注HBase系统自身的细节。

HBase系统架构

Client

HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写类操作,Client与HRegionServer进行RPC

Zookeeper

Zookeeper Quorum中除了存储了-ROOT-表的地址和HMaster的地址,HRegionServer也会把自己以Ephemeral方式注册到 Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的 单点问题,见下文描述

HMaster

HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上主要负责Table和Region的管理工作:

1.       管理用户对Table的增、删、改、查操作

2.       管理HRegionServer的负载均衡,调整Region分布

3.       在Region Split后,负责新Region的分配

4.       在HRegionServer停机后,负责失效HRegionServer 上的Regions迁移

HRegionServer

HRegionServer主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。

HRegionServer内部管理了一系列HRegion对象,每个HRegion对应了Table中的一个Region,HRegion中由多 个HStore组成。每个HStore对应了Table中的一个Column Family的存储,可以看出每个Column Family其实就是一个集中的存储单元,因此最好将具备共同IO特性的column放在一个Column Family中,这样最高效。

HStore存储是HBase存储的核心了,其中由两部分组成,一部分是MemStore,一部分是StoreFiles。MemStore是 Sorted Memory Buffer,用户写入的数据首先会放入MemStore,当MemStore满了以后会Flush成一个StoreFile(底层实现是HFile), 当StoreFile文件数量增长到一定阈值,会触发Compact合并操作,将多个StoreFiles合并成一个StoreFile,合并过程中会进 行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的写操作只要 进入内存中就可以立即返回,保证了HBase I/O的高性能。当StoreFiles Compact后,会逐步形成越来越大的StoreFile,当单个StoreFile大小超过一定阈值后,会触发Split操作,同时把当前 Region Split成2个Region,父Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer 上,使得原先1个Region的压力得以分流到2个Region上。下图描述了Compaction和Split的过程:

在理解了上述HStore的基本原理后,还必须了解一下HLog的功能,因为上述的HStore在系统正常工作的前提下是没有问题的,但是在分布式 系统环境中,无法避免系统出错或者宕机,因此一旦HRegionServer意外退出,MemStore中的内存数据将会丢失,这就需要引入HLog了。 每个HRegionServer中都有一个HLog对象,HLog是一个实现Write Ahead Log的类,在每次用户操作写入MemStore的同时,也会写一份数据到HLog文件中(HLog文件格式见后续),HLog文件定期会滚动出新的,并 删除旧的文件(已持久化到StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知 到,HMaster首先会处理遗留的 HLog文件,将其中不同Region的Log数据进行拆分,分别放到相应region的目录下,然后再将失效的region重新分配,领取 到这些region的HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。

HBase存储格式

HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,主要包括上述提出的两种文件类型:

1.       HFile, HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile

2.       HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File

HFile

下图是HFile的存储格式:

首先HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。正如图中所示的,Trailer中有指针指向其他数 据块的起始点。File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等。Data Index和Meta Index块记录了每个Data块和Meta块的起始点。

Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制。每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询。 每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏。后面会详细介绍每个KeyValue对的内部构造。

HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构。我们来看看里面的具体结构:

开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是 RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有这么复杂的结构,就是纯粹的二进制数据了。

HLogFile

上图中示意了HLog文件的结构,其实HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。

HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue,可参见上文描述。

结束

本文对HBase技术在功能和设计上进行了大致的介绍,由于篇幅有限,本文没有过多深入地描述HBase的一些细节技术。目前一淘的存储系统就是基于HBase技术搭建的,后续将介绍“一淘分布式存储系统”,通过实际案例来更多的介绍HBase应用。

介绍内容来自:http://www.searchtb.com/2011/01/understanding-hbase.html

加载中

评论(3)

巴拉迪维
巴拉迪维
Rowkey 设计真可以单独当一门学问来研究哇!
Ryan-瑞恩
Ryan-瑞恩
HBase 最新文档:http://hbase.apache.org/book.html#ttl

Apache HBase 2.3.2 发布,分布式存储系统

Apache HBase 2.3.2 已经发布。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 ...

09/29 07:26

Apache HBase 2.3.1 发布,分布式存储系统

Apache HBase 2.3.1 已经发布。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 ...

08/22 07:17

Apache HBase 2.3.0 发布,分布式数据库

Apache HBase 2.3.0 已发布,这是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 HBase 2.3.0 是 HBase 2.x 系...

07/18 07:25

Apache HBase 1.4.13 发布,分布式数据库

Apache HBase 1.4.13 发布了。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 这...

03/04 07:35

Apache HBase 2.1.8 发布,分布式存储系统

Apache HBase 2.1.8 发布了。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 HB...

2019/12/08 08:26

Apache HBase 1.4.12 发布,分布式数据库

Apache HBase 1.4.12 发布了。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 这...

2019/12/03 07:01

Apache HBase 1.4.11 发布,分布式数据库

Apache HBase 1.4.11 发布了。HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 这...

2019/10/27 07:39

Apache HBase 2.1.3 发布,分布式数据库

Apache HBase 2.1.3 发布了,HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 HB...

2019/02/20 08:21

Apache HBase 2.0.4 发布,分布式数据库

Apache HBase 2.0.4 已发布,HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 HB...

2019/01/06 07:43

Apache HBase 2.0.3 发布,分布式数据库

Apache HBase 2.0.3 已发布,HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用 HBase 技术可在廉价 PC Server 上搭建起大规模结构化存储集群。 HB...

2018/12/04 07:21

没有更多内容

加载失败,请刷新页面

52
回答
程序员的出路在哪里?七年半老程序员的一点心得

我是南方人,大专,软件技术专业,2011年底出来实习做前端。实习大家都懂的,薪资低任务重,做了大半年,到2012年拿了毕业证就离职了。说实话当时的技术也菜...

2019/06/28 22:08
1
回答
怎么一次执行两条 shell命令?
AMOS0626 的回答 07/13 15:56
最佳答案
&& 例如:cd /opt/ && ll
1
回答
arm64 cpu架构机器上安装了hadoop、hbase,编写的程序无法运行,求大神指教

报错说找不到Bytes$LexicographicalComparerHolder$UnsafeCompare,但是这个类没有问题,程序在我的window...

2019/07/18 15:09
3
回答
Spark on yarn 在创建Hbase的Connection时,报 ClassNotFoundException

ConnectionFactory.createConnection(configuration) 在执行以上方法时候报的错误: Caused by: j...

05/09 11:02
4
回答
大家都在用什么样的hbase图形化客户端工具?

大家都在用什么样的hbase图形化客户端工具?有好用的工具给分享下……

2015/07/18 13:05
1
回答
链接 Kerberos ,提醒我要 , Kerberos用户名 [Administrator]: 17:32:16.489 [ReadOnlyZKClient

Default-IPC-NioEventLoopGroup-1-1] DEBUG org.apache.hbase.thirdparty.io.netty...

03/04 17:34
1
回答
NoNodeException: KeeperErrorCode = NoNode for /hbase/hbaseid

org.apache.hadoop.hbase.client.ConnectionImplementation(line:529) : Retrieve ...

02/26 15:31
1
回答
hbase问题 GSSException: Invalid name provided (Mechanism level: KrbException: Cannot locate default realm)

failed on local exception: javax.security.sasl.SaslException: Failure to init...

2019/12/17 15:53
5
回答
使用java 开发连接 Hbase程序,出现连接之后永久等待

window下 开发的日志如下 14-11-25.17:10:28.904 [main-SendThread(CentOs-PC:2181)] INFO ...

2014/11/25 17:13

没有更多内容

加载失败,请刷新页面

HBase~hbase

对于springboot操作hbase来说,我们可以选择官方的依赖包hbase-client,但这个包的google类库很多时候会和你的项目里的google类库冲突,最后就是你的程序缺少类而无法启动,解决这个问题的方...

08/18 14:00
18
0
Hbase访问方式之Hbase shell

Hbase的访问方式 1、Native Java API:最常规和高效的访问方式; 2、HBase Shell:HBase的命令行工具,最简单的接口,适合HBase管理使用; 3、Thrift Gateway:利用Thrift序列化技术,支持C...

2019/03/06 09:45
105
0
HBase-MR

一、需求1:对一张表的rowkey进行计数 官方HBase-Mapreduce 需求1:对一张表的rowkey进行计数 1)导入环境变量 export HBASE_HOME=/root/hd/hbase-1.3.0 export HADOOP_HOM...

2018/12/09 20:49
10
0
Hbase

后台访问地址:http://192.168.200.151:16010/ COMMAND GROUPS: Group name: general Commands: status, table_help, version, whoami Group name: ddl Commands: alter, alter_async, alter...

2019/12/07 17:44
16
0
HBase(七)Hbase过滤器

一、过滤器(Filter)   基础API中的查询操作在面对大量数据的时候是非常苍白的,这里Hbase提供了高级的查询方法:Filter。Filter可以根据簇、列、版本等更多的条件来对数据进行过滤,基于...

2018/08/17 22:12
32
0
HBase篇--HBase常用优化

一.前述 HBase优化能够让我们对调优有一定的理解,当然企业并不是所有的优化全都用,优化还要根据业务具体实施。 二.具体优化 1.表的设计 1.1 预分区 默认情况下,在创建HBase表的时候会自动...

2018/01/16 23:19
20
0
HBase之一:HBase原理和设计

一、简介 HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案。从功能上...

2019/01/07 15:09
86
0
HBase:HBase数据模型

hbase是列式存储,一行有一个row key,每行有多个时间戳代表不同的版本,有多个列族,每个列族有多个列,每个列可以存储多个数据 Row Key 决定一行数据 按照字典顺序排序的 Row Key只能存储6...

2019/06/30 22:44
13
0

没有更多内容

加载失败,请刷新页面

返回顶部
顶部